
NASA-TM-108117

A Beginner's Guide to Belief Revision
and Truth Maintenance Systems

CINDY L. MASON

ARTIFICIAL INTELLIGENCE RESEARCH BRANCH

MS 269-2

NASA AMES RESEARCH CENTER

MOFFETT FIELD, CA 94035-1000

_7

(NASA-TM-108117) A BEGINNER'S

GUIOE TO BELIEF REVISION AND TRUTH

_] MAINTENANCE SYSTEMS (NASA) 19 p

_J

N93-15290

Unc] _]S

G3/63 0135323

I I/ A Ames Research Center

Artificial Intelligence Research Brancl_

__ : Technical Report FIA-92-_3

October, 1992

T

A Beginner's Guide to Belief Revision

and Truth Maintenance Systems

Cindy L. Mason

1 Introduction

Over the past decade, belief revision systems and truth maintenance mech-

anisms have proven to be of general utility in a wide variety of problems.

Although truth maintenance is widely discussed in the literature, most au-

thors assume familiarity with the ideas of truth maintenance systems and

belief revision. This document serves as a primer on the basic notions of

truth maintenance and belief revision. It intentionally avoids use of the of-

ten confusing terminology found in the TMS literature and concentrates on

the ideas of TMSes. We first describe the general notion of reasoning with

assumptions, and the idea of beliefs. Next, we describe the traditional pro-

gramming model for systems that deal with beliefs. Subsequently we explore

the JTMS and ATMS in detail. A bibliography of TMS literature can be

found in [Martins 1990].

Assumption-based (or default) reasoning is concerned with inference from

assumptions (defaults). This type of inference has been identified with the

following patterns of human reasoning [Reiter 1988]:

Normally, P holds.

Typically, P is the case.

Assume P by default.

where conclusions are based on knowledge of what is typical, or usual, when

there is not information to conclud_ ._herwise. For example,

Normally, Men like Women.

Typically, Men like Women is the case.

Assume Men like Women by default.

This so called plausible reasoning generates new beliefs from old ones using

assumptions, and is not purely deductive in the classic sense. Assumptions

and consequent conclusions are tentative, since subsequent inferences and

information can lead to contradictions involving the assumptions.

The canonical example of this type of reasoning (modernized in [Ginsberg

1987]) is the following: If we know that most birds fly, and we know Opus is

a bird, then we may reasonably conclude that Opus can fly. Furthermore, we

can conclude that when Bill shoves Opus over the edge of the Grand Canyon,

Opus lives, because he can fly.

The general idea is that we can use an assumption (or default conclusion)

and the inferences it entails as long as there is no information to indicate

these beliefs are wrong, 1 as formulated in [Reiter 1980], "in the absence of

any information to the contrary, assume ..." A reasoning agent may use its

assumptions and consequent deductions as long as they are consistent with

what is known 2.

The difficulty in implementing assumption-based reasoning is that default

assumptions and their consequents are tentative. Facts that are added might

later be thrown out. In our example, if we find out later that Opus is a

penguin, the original assumption and subsequent inferences must be revised.

The assumption that Opus can fly must be deleted because penguins can't

fly, and the conclusion that Opus lives after he was shoved into the canyon

must be deleted as well, since it depends on the assumption that Opus could

fly.

The term belief is often used in the context of default reasoning to de-

note the idea that the conclusions of the reasoning agent are subject to

revision, hence the term belief revision system. This type of reasoning is

non-monotonic since some of the beliefs may be withdrawn as reasoning pro-

XThis type of reasoning can be traced back to the TttNOT operator in MICRO-
PLANNElZ[Sussman et. al. 1970].

2By _known' we refer to the facts presently in the fact base, rather than to the set of
facts which may be derivable. In general, determining whether or not a fact can be derived
is not decidable.

2

gressesand the totality of beliefs need not increase monotonically.

A truth maintenance system (TMS) s is the collection of procedures and

data structures used for accomplishing belief revision. Rather than actually

removing fact base items, the TMS marks each fact base item to indicate

whether or not it is currently BELIEVED. The task of the truth maintenance

system is to maintain the set of conclusions that are believed at any point

during reasoning.

TMS's are recognized as the most important component of systems that

can reason with assumptions and revise beliefs over the course of problem

solving. In general, belief revision techniques appear useful in any circum-

stance involving the need to maintain consistency or to consider multiple

competing views. TMS's have been applied to a broad variety of areas,

including software requirements verification[Chandra 1991], user modelling

[Jones and Millington 1988], circuit analysis [deKleer and Williams 1987],

vision [Provan 1987][Bowen and Mayhew 1989], signal interpretation [Ma-

son et. al. 1988] [Mason and Johnson 1989], scientific discovery[Rose and

Langley 1986], and analog circuit design [Stallman and Sussman 1977].

2 Architecture of the TMS

The TMS is commonly viewed as an independent program component asso-

ciated with the automated reasoning system or problem-solver component. 4

The task of the problem-solver is to draw inferences based on its beliefs, while

the job of the TMS is to maintain the consistency of the problem solver's
beliefs.

Because this set of currently held beliefs largely controls the course of

problem solving, the interface between the problem solver and TMS is an

important aspect of a belief revision system. Most often the problem solver

provides the TMS with input consisting of the results of each of its inferences

- both the conclusions and the justifications. For example, "conclusion q is

3TMS is defined here as in [McAliester]980] to mean a class of algorithms. The term
was originally coined by Doyle in [Doyle 1978][Doyle 1979] to describe the first domain
independent truth maintenance system, and was later renamed a Reason-Maintenance
System (RMS) [Doyle 1983]

4Some belief revision systems incorporate truth maintenance functions directly into the
overall problem-solver.

justified by belief in pl, P2, ... pn " or "conclusion q is justified by belief

in Pa, P2, • • • p, and disbelief in rl, r2, . .. rn" to indicate conclusion q

depends not only on beliefs but on disbelief. 5 The second justification is

called a non-monotonic justification since the set of problem-solver beliefs

may actually be reduced in size if the system should subsequently come to

believe in any of rl ... r,. The problem-solver component also informs the

TMS when a contradiction has been encountered during inferencing.

The TMS, in turn, uses the input to record the beliefs (and disbeliefs) on

which each conclusion depends. These explicit data dependency records are

the principle data structures on which the process of belief revision is based.

In general, belief revision occurs whenever the problem solver informs the

TMS that conclusions are incompatible (i.e. a contradiction has occurred)

or when assumptions or premises need to be withdrawn or changed. The

problem solver may then query the TMS as to which propositions it can

believe. From this perspective, the TMS can be viewed as a clause manage-

ment system, providing yes/no answers to problem-solver queries of the form

(believed? q).

The manner in which dependencies are recorded divides the TMS litera-

ture among two broad categories, the justification-based (or single-contezt),

JTMS, and the assumption-based (or multiple-contezt), ATMS. _ JTMS's record

information about the facts that directly infer a fact. ATMS's record infor-

mation about the default assumptions that produce a fact. This difference

in recording style allows the ATMS to maintain multiple contexts of belief

during reasoning while JTMS-type systems maintain only a single context.

The ATMS achieves this by explicitly representing the sets of assumptions for

which each fact is believed. Each type of TMS is discussed in the following
subsections.

_The notion of disbelief may be implemented in many ways, including giving each item

a belief status (IN or OUT, Believed or Disbelieved, etc.), absence of the belief in memory,
or presence of the negated belief.

CA notable third category would be the LTMS, or Logic-based TMS [McAllester 1980].
A clear description of LTMS systems is presented in [Rich and Knight 1991].

"a

3 Justification-based TMS

Doyle [Doyle 1979] built the first domain independent JTMS. All subsequent
work in the field can be viewed as based on it.

Representing Beliefs and Reasons for Beliefs in a JTMS

The internal representation for a problem-solver fact is a TMS node. Each

TMS node corresponds to a problem-solver fact. This abstraction allows the

TMS to work on the dependency information without regard to a particular

fact representation. A JTMS node has the form

<Node-Id, Fact, Justification, Belief-Status>

where Node-Id is the TMS node identifier used by the JTMS, Fact is the

problem-solver fact to which this TMS node corresponds, and Belief-Status

indicates whether the fact is BELIEVED or DISBELIEVED. Description of
the Justification follows.

The justification for a fact, f, is represented internally as two lists of TMS
nodes.

(<BELIEVED-LIST> <DISBELIEVED-LIST>)

A justification is valid when all nodes in the BELIEVED-LIST are BE-

LIEVED and all nodes in the DISBELIEVED-LIST axe DISBELIEVED.

Each TMS node has a belief-status represented by one of two labels:

• BELIEVED - if there is a valid justification for the fact.

• DISBELIEVED - if there is no valid justification for the fact.

At any point during problem solving, some set of facts in the fact base will

be labeled BELIEVED and some will be labeled DISBELIEVED. The set

of BELIEVED facts constitutes the current set of beliefs or current context.

DISBELIEVED facts are not part of the currently held set of beliefs and axe

inaccessible to the problem-solver.

It is important to keep clear the distinction between the state of belief for

a fact, as represented by the belief-statuses, and the interpretation, or truth

value, of a fact. The TMS keeps track of derivations and does not determine

5

validity. The following observationshould make this clear. Doyle's JTMS

allows both A and NOT-A to each be represented as separate facts. Both

may be BELIEVED, both may be DISBELIEVED, or one BELIEVED and

one DISBELIEVED. It is up to the problem solver to notice when both A

and NOT-A are BELIEVED and that there is an inconsistency.

A premise is a fact that is always believed, and is justified with an empty

BELIEVED-LIST and empty DISBELIEVED-LIST. An assumption is a fact

that requires the absence of other facts to be valid. Hence, any justification

with a non-empty DISBELIEVED-LIST represents an assumption. This

aspect of the JTMS directly implements the default-logic notion of tenative

inference[Reiter 1980]:

BIRD(x) M:FLY(x)

FLY(x)

where M: is the modal operator, "It is consistent to assume," and the form

is read, "if x is a bird, and it is consistent to assume x flies, then infer x

flies." All other justifications represent derived facts. The following example

makes use of these concepts:

Y

Node Fact Justification Status

R1

R2

R3

P1

A1

A2

P2

D1

If Bird(x) and M:Flies(x)

Then FLies(x)

If Penguin(x)

Then _Flies(x)

If Shoved_Into_Grand_Canyon(x)

and Flles(x) Then Lives(x)

Bird(Opus)

Files(Opus)

-_Flies(Opus)

Shoved--Into_Grand-Canyon(Opus)

Lives(Opus)

(() ()) Premise B

(0 0) Premise B

(0 0) Premise B

(() 0) Premise B

((P1,R1) (A2)) Assumption B

(() (A1)) Assumption D

(() ()) Premise B

((A1,P2,R3) ()) Derivation B

Each line of the example has node identifier, the corresponding problem-

solver fact it represents, the JTMS justification, and status of belief - B

indicating BELIEVED, and D indicating DISBELIEVED. Rules R1-R3 are

represented as premise nodes, as are facts P1 and P2. Nodes A1 and A2

W

correspond to the assumptions that were made in order to infer that Opus

flies. Node D1 represents the derivation that Opus lives and is dependent

upon assumption A1, premise P2, and rule R3. Assumption A1 depends

on disbelief in assumption A2, and is valid as long as A2 has belief status
DISBELIEVED.

At some later time, the observation that Opus is a penguin is entered

into the system. This fact gives a valid justification to the assumption node

A2, and causes node A1 to become DISBELIEVED. As a result, node D1

becomes DISBELIEVED as well. The resulting TMS nodes and their statuses
are shown below:

Node Fact Justification Status
R1

R2

R3

P1

A1

A2

P2

D1

P3

If Bird(x) M:Slies(x)

Then Flies(x)

If Penguin(x) M:--,Flies(x)

Then -,Flies(x)

If Shoved_Into_Grand_Canyon(x)

and Flies(x) Then Lives(x)

Bird(Opus)

Fries(Opus)

--Flies(Opus)

Shoved._Into_Grand_Canyon(Opus)

Lives(Opus)

Pengiun(Opus)

(() ())

(() ())

(0 0)

(() ())
((P1,R1) (A2))

((P3, R2) (A1))

(00)
((A1,P2,R3) ())

(()0)

Premise B

Premise B

Premise B

Premise B

Assumption D

Assumption B
Premise B

Derivation D

Premise B

4 Assumption-based TMS

DeKleer observed that instead of associating an entire fact base with a single

set of assumptions, one could associate sets of assumptions with each fact.

This is the fundamental difference between a JTMS and an ATMS. For each

problem-solver fact, an ATMS maintains an explicit list of assumption sets

that support its derivation, and that characterize the reasoning contexts in

which it is valid. In this respect, the ATMS is similar to Relevance Logic [An-

derson and Belnap 1975], and to the TMSes of [Martins 1983] and [Williams

19841.
As a result of this view of . 3ntradictions and dependency information,

7

OR_:NAL P3._E IS

OF POC_ QUALITY

the problem-solver program can now consider multiple and possibly contra-

dictory contexts simultaneously. Context switching is essentially cost-free,

making the use of TMS mechanisms accessible to problem solvers that must

explore a large percentage of potential solutions. In addition, problem solvers

can reason about and compare multiple possible solutions at once. These as-

pects of the ATMS can be important in certain domains, such as multi-agent

problem solving, where exploring the views of several agents is a requirement.

y

Representing Beliefs and Justifications for Belief

As with the JTMS, an ATMS "node" corresponds to a fact in the problem-

solver's fact base. However, the information an ATMS stores with a node

differs from that of a JTMS. While the JTMS associates a node with its

justification, an ATMS associates each node with a label indicating the sets

of assumptions (defaults) that support each valid derivation of the fact. The

sets of assumptions are "the foundation to which every problem-solver datum

can be ultimately traced"[deKleer 1986]. This idea can be illustrated by re-

writing our JTMS example in terms of the ATMS:

Node Fact Label

R1

R2

R3

P1

A1

P2

D1

If Bird(x) M:Flies(x) Then Flies(x) { {} }

If Penguin(x) { {} }

Then _Flies(x)

If Shoved_Into_Grand_Canyon(x) { {} }

and Flies(x) Then Lives(x)

Bird(Opus) { {} }

Flies(Opus) { { A 1} }

Shoved..Into_Grand_Canyon(Opus) { {} }

Lives(Opus) { {AI} }

Premise

Premise

Premise

Premise

Assumption

Premise

Derivation

Here, each node is associated with the corresponding problem-solver fact,

as before, but instead of an explicit label indicating belief status, each node is

labelled with the sets of assumptions or reasoning contexts in which each fact

was derived. Premises are valid in all reasoning contexts, and are labelled

by the set containing the empty assumption set, { {} }. Assumptions are

a distinguished subset of facts representing non-monotonically derived facts.

8

The assumptions used in the derivation of facts appear in the ATMS label

of derived facts. In general, the assumption set for a derived fact, f, denoted

A(f), is computed by
n

A(f) = [.J A(p,)
i=l

where the p_ are the antecedents that directly derive f. Assumption set {A1}

is the label for the fact Lives(Opus), and was found by taking the union of

the assumption sets for nodes A1 and R3. If there are no assumption sets

that support a node, represented by the empty label, { }, the fact is not

believed in any reasoning context.

When a contradiction is discovered, the assumptions of the contradictory

facts are unioned, creating an assumption set that is capable of supporting

the derivation of an inconsistent combination of facts. This assumption set is

often referred to as the "NOGOOD" assumption set, or an INCONSISTENT

assumption set. The label for each node is checked to determine if any

assumption sets contain the INCONSISTENT assumption set. Hence, the

process of belief revision is reduced to subset operations.

In our previous example, suppose we now observe Pengiun(Opus). This

gives rise to the belief _Flies(Opus). The problem solver makes the obser-

vation that -_Flies(Opus) and Files(Opus) are inconsistent facts, and notifies

the ATMS of the contradiction, in response, the ATMS unions the assump-

tion sets of the two, creating the INCONSISTENT assumption set, {A1, A2}
The ATMS then checks the label of each node to determine if it contains the

INCONSISTENT assumption set, deleting any that are found. The assump-

tion set is then cached to prevent further inferences involving the inconsistent
set of facts.

9

Node Fact Label

R1 Premise

R2 Premise

R3 Premise

If Bird(x) M:Flies(x) Then Flies(x) { {} }

If Penguin(x) { {} }

Then -_ Flies(x)

If Shoved_Into_Grand_Canyon(x) { {} }

and Flies(x) Then Lives(x)

Pl Bird(Opus) { {} } Premise

A1 Files(Opus) { {A1} } Assumption

P2 Shoved_Into_Grand_Canyon(Opus) { {} } Premise

DI Lives(Opus) { {A1} } Derivation

P3 Penguin(Opus) { {} } Premise

A2 -,Flies(Opus) { {A2} } Assumption

5 What's In a Label

In the preceding sections we have discussed the dependency records used

by each of the JTMS and ATMS in labelling problem-solver beliefs as BE-

LIEVED or DISBELIEVED. The JTMS dependency record consists largely

of the justification, which is non-monotonic, and allows us to pursue a single

set of assumptions or context at a time. The ATMS dependency record con-

tains both justification and a culmulative record of founding assumptions,

and allows the problem solver to pursue multiple lines of reasoning or con-

texts at once. Both TMS systems support multiple justifications for a fact.

In general, a number of different kinds of TMS are possible, allowing for

monotonic or non-monotonic justifications, multiple or single justifications

for a fact, multiple or single contexts examined at once, probabilistic or non-

probabilistic belief status, and so on. These various TMS "features" define

the dependency structures and the algorithms that maintain them for a par-

ticular style of TMS, and hence directly influence the computational expense

of relying on a TMS-based system. The selection of a particular type of TMS

should make sense with how the problem solver needs to make inferences and

explore the problem space.

For example, our rule-based problem solver for signal interpretation [Ma-

son et. al. 1988], had the following features. First, the search space was

never very deep (we had no inference chains longer then 10 or so), but each

10

step of the inferencing was computationally intensive. Second, we wanted

to find all possible interpretations, but the inferencing rarely involved more

than one justification for a fact. The first implementation of our TMS, was

very much like the ATMS described in [deKleer 1986]. This system was

built using Zeta-lisp on a Symbolics, and it ran like a snail. By running a

CPU-time profiler we observed that most of the time was spent manipulat-

ing dependency information. We simplified the dependency structure and

omitted a number of assumption set optimization strategies. It now runs to
our satisfaction.

In general, domains that involve little backtracking or require a single

or few solutions, will pay a penalty for using an ATMS-style TMS, relying

on dependency structures that were designed for problem solvers needing all

or most solutions. At the same time, traditional ATMSes (using the belief

updating algorithm defined in [deKleer 1986]) have complex labels, and are

computationaUy expensive to maintain as well. The reader may realize these

observations by examining the algorithms for truth maintenance in each of

the JTMS and ATMS.

5.1 Truth Maintenance in the JTMS

Recall that truth maintenance (or belief updating) is the process of relabeling

the support-statuses of TMS nodes so that the set of beliefs currently in the

database is consistent. In the JTMS, the truth maintenance process may

be invoked whenever the problem solver presents a justification to the TMS,

or alternatively, whenever a contradiction is discovered. If a justification

for a new node is invalid, or if the node is already present and IN, then

no relabeling i t necessary. If the justification changes the support-status of

a node, as when a fact is re-derived with a different justification, then the

node and all its consequences must be relabeled. In addition, any nodes

whose OUT-list refers to a node whose status is changing from OUT to IN

must be checked for relabeling as well. This process proceeds recursively

for the network of dependency nodes and must be done for each node that

changes belief-status until all affected nodes have been relabeled. When

the proces_ has finished, the TMS informs the problen, olver of the new

belief statuses. The algorithm will _t terminate if unsatisfiable dependency

circularities exist. For example:

11

node X (SL () (Y))

node Y (SL 0 (Z))

node Z (SL () (X))

For a more detailed description of the truth maintenance algorithm the

reader is referred to [Doyle 1979] or [Charniak and McDermott 1986].

5.1.1 Dependency Directed Backtracking

The TMS relies on the problem solver to notify the TMS when beliefs are

involved in contradictions. The TMS gathers the assumptions for the contra-

diction nodes and marks one of them, designated as the culprit, as OUT. The

assumptions are located by recursively tracing back through the justifications

for the contradiction node, finding the antecedents of antecedents, and so on,

accumulating the assumption nodes that directly support the contradiction

node. The TMS then creates a nogood node representing the notion that

the combination of these assumptions is contradictory. The nogood node is

justified by a CP justification. The nogood node is IN as long as the set of

assumptions implies the contradiction.

The process continues by picking one of the assumption nodes in the NO-

GOOD set as the culprit to be relabeled OUT and removed from the current

belief set. This is done by giving support to one of the OUT-list nodes for

the culprit assumption node. The choice of a culprit assumption is arbitrary,

and may result in a repetition of this process should the contradiction be

derived again.

5.1.2 Truth Maintenance in the ATMS

Recalling that a node is derivable from the assumption sets contained in its

label, the label of a node implicitly defines all the contexts in which the

node may be a member: a node is a member of only those contexts whose

characterizing environments are supersets of the environments in its label.

Membership within a context may be checked by a subset test.

As with Doyle's JTMS, the problem solver must inform the ATMS of

the contradiction. When a contradiction is discovered, environments that

are supersets of the contradictory one are removed from all labels, leaving

the database in such a form that no facts imply the contradiction. The

12

contradictory assumption set is then recorded so that no future inferences

based on the environments known to be contradictory will be made.

These concepts are illustrated by the following example Suppose environ-

ment E contains assumptions {A, B, C}. The ATMS creates the following

nodes in response to the justifications provided by the problem solver.

Justification ATMS NODE

a_d

c.----¢e

aAc---* f

d A e -.--__l_

< d, {{A}}, ... >
< e, {{C}}, ... >
< f, {{A, C}}, ... >

The ATMS computes that {A, C} is contradictory. Only fact fis affected.

Environments {A, e} and {A, B, C} are contradictory, while derivations

relying only on {A}, {C}, {A, B}, or {B, C} still hold.

When a new justification for an existing belief is supplied by the problem

solver, the label of a node is updated by the ATMS in the following way. The

additional contexts in which the node holds are the union of the contexts of

the antecedents in the new justification. The characterizing environments of

the new contexts are computed by taking the union of the possible combi-

nations of environments in the label from each of the antecedents, and then

removing any labels that are supersets of nogood assumption sets. The min-

imal environments are then formed by removing the environments that are

supersets of any other environments in the label.

An example adapted from deKleer[deKleer 86] illustrates this procedure.

nodex: <..., {{A, B}, {B, C, E}}, {...}>

nodey: <..., {{A, C}, {D, E}}, {...}>

nodez: <..., {{A, B, C}}, {}>

nogood {A, B, D}

The problem solver deduces a new justification for z, x A y ---* z

The union of combinations of environments in x and y's labels is {{A, B, C},

{A, B, D, E}, {A, B, C, E}, {B, C, D, Z}}

Removing the contradictory {A, B, D, E} and the superset {A, B, C, E},
the new label of node z is

< ..., {{A, B, C}, {B, C, D, E}}, ... >

13

The new labeling is then propagated to the consequents of the relabeled

node.

6 General Comments

Historically, truth maintenance mechanisms were designed to improve problem-

solving efficiency in programming languages for planning, such as Conniver

[McDermott and Sussman 1972]. The basic idea was to save the fact base

(working memory) at each major decision point so that it could be rein-
stated should the next few choices result in an inconsistency. Stallman and

Sussman's programming language, ARS, for Computer-aided Circuit Anal-

ysis [Stallman and Sussman 1977], used the notion of dependency records

for an intelligent cache and for dependency-directed backtracking. They also

kept lists of contradictory or "NOGOOD" assertions as a technique to pre-

vent incorrect choices from being repeated. The first presentation of these

techniques as an independent programming module was in [Doyle 1979]. Al-

though Doyle developed the TMS as a domain independent search tool, for-

mal analysis of the resulting reasoning behavior led to the development of

non-monotonic logic [McDermott and Doyle 1980].

While TMSes seem to have taken on a life in themselves, it is important

to keep the idea of a TMS in perspective. Namely, it serves as an efficiency

mechanism for problem solving. With or without a TMS, the same solutions

must be found. However, the idea of a TMS is to relieve the problem solver

from the burden of belief updating, and to do it in an efficient manner. Use

of an ATMS can relieve the problem solver from task of re-deriving beliefs

during search. TMSes in general, allow the problem solver to assume a

contradiction-free database of beliefs.

7 Summary

This brief note is intended to familiarize the non-TMS audience with some of

the basic ideas surrounding classic TMS systems, namely the JTMS and the

ATMS. Topics of further interest include the relation between non-monotonic

logics and TMSes, efficiency and search issues, complexity concerns, as well

as the variety of TMS systems that have surfaced in the past decade or

14

so. These include probabilisitc-based TMS systems, fuzzy TMS systems,
_ tri-valued belief systems,and so on. =

15

References

[Anderson and Belnap 1975] A. R. Anderson and Nuel D. Belnap, Jr.
Entailment The Logic of Relevance and Necessity, Princeton University

Press, 1975.

[Bowen and Mayhew 1989] J. Bowen and J. Mayhew, "Consistency Mainti-
nance in the REV-graph Environment," TR AIVRU 020, University of
Sheffield, 1986.

[Chandra 1991] C. Chandra, "Applications of Truth Maintenance Systems
to the Development of Evolutionary Software," Unpublished paper,
Dept. of Computer Science, University of California, Berkeley, 1991.

[deKleer 1986] J. deKleer, "An Assumption Based TMS," Artificial Intel-
ligence 28 (1986), 197-224.

[deKleer and Williams 1986] J. deKleer and B. C. Williams, "Back to
backtracking: Controlling the ATMS," in Proceedings AAAI-86, Philadel-
phia, PA, (1986), 132-129.

[deKleer and Williams 1987] J. deKleer and B. C. Williams, "Diagnos-
ing Multiple Faults," Artificial Intelligence, 32, No. 1, 1987, 97-130.

[Doyle 1978] J. Doyle, "Truth Maintenance Systems for Problem Solving,"
Technical Report, AI-TR-419, AI Lab, MIT, Cambridge, MA, 1978.

[Doyle 1979] J. Doyle, "A Truth Maintenance System," Artificial Intelli-
gence 12, No. 3, November 1979, 495-516.

[Doyle 1983] J. Doyle, "The Ins and Outs of Reason Maintenance," in Pro-
ceedings IJCAI-83, Karlsrue, F.R.G., (1983),

[Ginsberg 1987] M. Ginsberg (Ed.), Readings in Non-Monontic Reasoning,

Morgan-Kanfmann, 1987, 15.

[Jones and Millington 1988] J. Jones and M. Millington, "Modelling Unix
Users with an Assumption-Based Truth Mantenance System: Some
Preliminary Findings," in Reason Maintenance Systems and their Applications,

Smith and Kelleher (Eds.), Ellis Horwood Limited, Chichester, UK.
1988, 134-154.

[Rose and Langley 1986] D. Rose and P. Langley, "Chemical Discovery

as Belief Revision," in Machine Learning 1, Kluwer Academic Pub-
lishers, Boston, Massachusetts, 1986, 423-451.

16

[Martins 1983] J. Martins, Reasoning in Multiple Belief Spaces, Ph.D.
dissertation, Department of Computer Science, Tech Report
No. 203, State University of New York at Buffalo, Buffalo,
NY, 1983.

[Martins 1990] J. P. Martins, "The Truth, the Whole Truth, and

Nothing But the Truth: An Indexed Bibliography to the Liter-
ature of Truth Maintenance Systems," AI Magazine, Fall 1990,
7-25.

[Mason et. al. 1988] C. Mason, R. Johnson, R. Searfus, D. Lager,
and T. Canales, "A Seismic Event Analyzer for Nuclear Test
Ban Treaty Verification" Proc. Third Intl. Conf on Applications of
Artificial Intelligence in Engineering, August 1988, Stanford, CA.

[Mason and Johnson 1989] C. Mason and R. Johnson, "The DATMS:
A Framework for Distributed Assumption-Based Reasoning,"
Distributed Artificial Intelligence, Vol. II, Eds. Gasser and Huhns,
Pitman and Morgan-Kaufman Publishers, San Mateo, Cali-
fornia , 1989.

[McAllester 1980] J. McAllester, "A Three Valued Truth Mainte-

nance System," AI Memo 551, AI Lab, MIT, Cambridge, MA,
1980.

[McDermott and Doyle 1980] D. McDermott and J. Doyle, "Non-
Monotonic

Logic I," Artificial Intelligencel3 (April 1980), 41-72.

[McDermott and Sussman 1972] D. McDermott and G. Sussman,
"The Conniver Reference Manual," MIT AI Memo No. 259a,
1972.

[Provan 1987] G. Provan, "Efficiency Analysis of Multiple-Context
TMSs in Scene Representation" Proc. Sixth National Conference
on Artificial Intelligence,l, 1987.

[Reiter 1988] R. Reiter, "Nonmonotonic Reasoning," in Exploring

Artificial Intel- ligence, H. E. Shrobe and American Associa-

tion for Artificial Intelligence (Eds.), Morgan-Kaufmann, San
Mateo, California, 1988, 439-482.

[Reiter 1980] R. Reiter, "A Logic for Default Reasoning," Artificial
Intelligence, 13 (April 1980), 81-132.

17

[Rich and Knight 1991] E. Rich and K. Knight, Introduction to
Artificial

Intelligence, 2nd Edition, McGraw-Hill Publishing Co., 1991.

[Stallman and Sussman 1977] R. StaUman, and G. Sussman. "For-
ward Reasoning and Dependency-Directed-Backtracking In a
System For Computer Aided Circuit Analysis," Artificial Intel-
ligence 9(2):135-196.

[Williams 1984] C. Williams, "ART the Advanced Reasoning Tool
- Conceptual Overview," Inference Corp., 1984.

18

